新网Logo
首页>互联网热点>

机器人懂点「常识」后,找东西方便多了:CMU 打造新型语义导航 AI 机器人

登录 注册

机器人懂点「常识」后,找东西方便多了:CMU 打造新型语义导航 AI 机器人

  • 来源:网络
  • 更新日期:2020-07-24

摘要:想让机器人像人一样思考,似乎一直是个难题。例如,让智 ( zhi ) 能 ( zhang ) 机器人去客厅拿个遥控器,结果看到机器人在厨房翻箱倒柜…好消息是,这个问题现在被 CMU 解决了。CMU

想让机器人像人一样思考,似乎一直是个难题。

例如,让智 ( zhi ) 能 ( zhang ) 机器人去客厅拿个遥控器,结果看到机器人在厨房翻箱倒柜…

好消息是,这个问题现在被 CMU 解决了。

CMU 研究团队打造出了一款拥有人类「常识」的导航机器人,让找东西变得更方便。

这款机器人能利用 AI 判断家中最可能找到目标物体的地点,从而尽快找到它。

例如,让机器人去拿放在「植物」旁边的遥控器,机器人几乎立即检测出了「植物」盆栽所在的位置,从而检测到遥控器的存在。

项目已被 ECCV 2020 收录,并获得了居住地目标导航挑战赛的第一名。

一起来看看实现的过程。

让机器人「学点常识」

事实上,以往大部分采用机器学习训练的语义导航机器人,找东西的效果都不太好。

相比于人类潜意识中形成的常识,机器人往往有点 死脑筋 ,它们更倾向于去记住目标物体的位置。

但物体所处的场景往往非常复杂,而且彼此间差异很大(正所谓每个人的家,乱得各有章法),如果单纯以大量不同场景对系统进行训练,模型泛化能力都不太好。

于是,相比于用更多的样本对系统进行训练,这次研究者们换了一种思路:

采用半监督学习的方式,使用一种名为semantic curiosity(语义好奇心)的奖励机制对系统进行训练。

训练的核心目的,是让系统基于对语义的「理解」来确定目标物体的最优位置,换而言之,就是让机器人 学点常识。

举个例子,通过理解冰箱和洗手间的差异,机器人就能搞懂目标物体和房间布局的关系,并计算出最容易找到某个物体的房间。(就像沙发通常会在客厅、而不是在洗手间)

一旦确定了物体最可能出现的地方,机器人就能通过导航,直接去往预计的位置,并快速检测到目标物体的存在,这个过程被称之为探索策略(exploration policy)。

采用 Mask RCNN 训练探索策略

如下图所示,策略的实现被分成了三步:学习、训练、测试。

首先,采用 Mask RCNN 对图像从上至下进行目标预测,用于训练探索策略,后者负责生成目标检测和场景分割所需的训练数据。

对训练数据进行标记后,数据会被用于微调和评估目标检测及场景分割的效果。

在目标检测的过程中,即使面对某一物体的镜头转 360 度,机器人也必须将之识别为同一种物体。

这其中最关键的一个步骤,在于构造语义地图。

构造「有魔法的」地图

从下图可见,图像被处理成 RGB 和 Depth 两种模式。

其中,RGB 图像会通过 Mask RCNN 网络,用于获得目标分割预测。

而 Depth 架构,则被用于计算点云,其中的每个点,都会在 Mask RCNN 的预测结果基础上与语义标签进行关联。

最后,基于几何计算,会在空间中会生成一个三维立体图。

每一个通道用于表示一种物体类别,原本 2D 的地图就会转变成一个 3D 的语义地图。

有了语义地图,机器人在移动时也能准确地对 3D 空间进行目标预测了。

「语义好奇心」奖励机制

不过,这会出现一种情况,如果目标物体在不同的帧上被预测的标签不同,那么语义图中对应这个物体的多个通道都会是 1。

如下图,不同的时间,系统预测的目标标签可能并不一样,有时候是床,有时候则变成了沙发。

这就出现了语义好奇心的策略。

论文定义了语义好奇心累计奖励(cumulative semantic curiosity reward),指占语义地图中所有元素总和的比例。

而语义好奇心奖励机制,则采用强化学习的方式,目的是使这个比例最大化。

通过了解物体之间的差异、从而了解房间布局,系统就会逐渐理解房间与物体的联系。

实验结果

事实证明,这种方法非常有效。

机器人在训练过程中,可以专注地去理解目标物体与房间布局的关系,而非不停地进行路径规划。

训练出的机器人,在人机交互方向上变得更加容易操控。

例如,在各种方法下,即使探索区域不及倒数第二和第三种方法,但语义好奇心仍然检测出了相当的目标数量。

这说明它在进行目标检测时,能更专注于所需要探测的物体。

而从下图可见,语义好奇心明显发现了更多其他策略无法发现的物体,这对于检测目标是非常有效的。

在最终的训练结果中,语义好奇心拿到了最高的 39.96 分。

这个方法,使得人与机器人之间的交互也变得更加容易实现。

作者介绍

Devendra Singh Chaplot,在卡内基梅隆大学(CMU)读博,主要研究深度强化学习、以及其在机器人和自然语言处理方向上的应用。

传送门:

论文链接:

https://arxiv.org/pdf/2006.09367.pdf

项目链接:

https://devendrachaplot.github.io/projects/SemanticCuriosity

— 完 —

本文系网易新闻网易号特色内容激励计划签约账号【量子位】原创内容,未经账号授权,禁止随意转载。

报名 | 智慧生活行业私享会

欢迎报名,与峰瑞资本、石头科技、网易有道、思必驰、九号机器人、视感科技、云丁科技等企业高管,共同探讨如何借力资本市场、把握行业趋势,打造全场景智慧生活:

量子位 QbitAI · 头条号签约作者

\' \' 追踪 AI 技术和产品新动态

喜欢就点「在看」吧 !