后台架构设计—数据存储层

摘要:数据存储重要性:数据是企业最重要的财产;数据可靠性是企业的命根,一定要保证。单机存储原理:存储引擎:存储系统的发动机,它决定存储系统的功能和性能;引擎类型:哈希存储引擎、B树存储引擎、LSM存储引擎哈希存储引擎:基于哈希表结构:数组+链表;支持CreateUpdateDelete随机ReadB

  数据存储重要性:

  数据是企业最重要的财产;

  数据可靠性是企业的命根,一定要保证。

  单机存储原理:

  存储引擎:存储系统的发动机,它决定存储系统的功能和性能;

  引擎类型:哈希存储引擎、B树存储引擎、LSM存储引擎

  哈希存储引擎:基于哈希表结构 :数组+链表;支持CreateUpdateDelete随机Read

  B树存储引擎:基于B Tree实现,支持单条记录的CURD,支持顺序查找。RDBMS使用较多。

  LSM树存储引擎:对数据的修改增量保存在内存,达到一定条件再批量更新到磁盘;优势在于批量写入;劣势在于读取需合并磁盘和内存;

  避免内存数据丢失:修改操作写入到CommitLog日志。

  127266190.jpg

 

  数据模型:

  文件:以目录树组织,如linux,mac,windows;

  关系型:每个关系是一个表格,多行组成,每行多列;

  键值(Key-Value):Memcached, Tokey, Redis;

  列存储型:Casadra, Hbase;

  图形数据库:Neo4J, InfoGrid, Infinite Graph

  文档型:MongoDB, CouchDB

  事务与并发控制:

  事务4个基本属性:ACID 原子性、一致性、隔离性、持久性

  并发控制:

  锁粒度:Process->DB->Table->Row

  提供Read并发,Read不加锁:写时复制、MVCC

  数据恢复:通过操作日志

  多机存储原理:

  单机存储原理在多机存储仍然可用;多级存储基于单机存储;

  数据分布:

  分布在多个节点,节点间负载均衡;

  分布方式:

  静态:取模、uid%32;

  动态:一致性hash,数据飘移问题(A节点更新前出现故障,更新迁移到B节点后A节点又恢复);

  复制:

  分布式存储多个副本;保证高可靠和高可用;Commit Log。

  故障检测:

  心跳机制、数据迁移、故障恢复;

  FLP定理与设计:

  FLP Impossiblity(FLP不可能性):

  在异步消息通信场景,即使只有一个进程失败,没有任何方法能保证非失败进程达到一致性。

  CAP定理与设计:

  CAP:一致性(Consistency)、可用性(Availabilty)、分区容忍性(Tolerance of network Partition)。

  一致性和可用性需要折中权衡

  分布式存储系统需要能够自动容错,也就是说分区容忍性需要保证。

  2PC(Two Phase Commit)协议与设计:

  用于分布式事务;

  两类节点组成:

  协调者(1个);

  事务参与者(多个);

  分两阶段:

  请求阶段:协调者通知参与者准备提交或取消事务,所有参与者都需要表决同意或者不同意。

  提交阶段:

  收到参与者所有决策后,协调者进行决策(提交或取消);

  通知参与者执行操作,所有参与者都同意就提交,否则取消;

  参与者收到协调者的通知后执行操作。

  2PC协议是阻塞式:

  事务参与者可能发生故障

  --设置超时时间;

  协议者可能发生故障

  --日志记录、备用协调者

  应用:交易订单 等;

  Paxos协议与设计:

  作用:

  解决节点间的一致性问题;

  主节点宕掉,则选择新节点;

  主节点常以操作日志的形式同步备节点。

  分两种角色:提议者(Prpposer)、接受者(Acceptor);

  执行步骤:

  批准:Proposer发送accept消息给Accepter要求接受某个提议者;

  确认:超一半的Accepter接受,则提议值生效,Proposer发送acknowledge消息通知所有的Accepter提议生效。

  与2PC比较::

  2PC协议保证多个数据分片上操作的原子性;

  Paxos协议保证一个数据分片多个副本之间的数据一致性;

  Paxos协议用法:

  实现全局的锁服务或者命名和配置服务;

  ---Apache Zookeeper

  将用户数据复制到多个数据中心;

  ---Google Megastore

  数据存储层冗余:

  多个副本,实现访问的高可用性。

  如何实现:

  数据复制:

  基于日志;

  Master-Slave:mysqlMongoDB

  Replic Set:MongoDB

  双写:

  存储层多主对等结构;比较灵活,但数据模块层成本较高;

  数据备份:

  冷备份:

  定期将数据复制到某个存储介质,是传统的数据保护手段;

  优点:简单、廉价,技术难度低;

  缺点:定期存在数据不一致;恢复数据时间长;

  热备份:

  online备份;提供更好的高可用性;

  异步热备份:

  从主存储写入即返回给应用端,由存储系统异步写入其他副本;

  同步热备份:

  多份数据副本写入同步完成,无主从之分;

  为提高性能,应用程序并发写入;

  响应延迟是最慢的那台服务器;

  数据存储层失效转移机制:

  失效确认:是否宕机、心跳;

  访问转移:访问路由到非宕机机器;存储数据完全一致;

  数据恢复:主从、日志;